案例
这里我以显示电商订单详情为背景举个例子,新建表如下:CREATE TABLE `cps_user_order_detail` (
`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键',
`user_id` varchar(32) NOT NULL DEFAULT '' COMMENT '用户ID',
`order_id` bigint(20) DEFAULT NULL COMMENT '订单id',
`sku_id` bigint(20) unsigned NOT NULL COMMENT '商品ID',
`order_time` datetime DEFAULT NULL COMMENT '下单时间,格式yyyy-MM-dd HH:mm:ss',
PRIMARY KEY (`id`),
KEY `idx_time_user` (`order_time`,`user_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin COMMENT='用户订单详情';
然后手动向表里插入120W条数据。
现在有个需求:分页展示用户的订单详情,按照下单时间倒序。
表结构精简了,需求也简单。于是哗哗哗的写完代码,提测上线了。早期运行一切正常,可随着订单量的不断增大,发现系统越发的缓慢,还时不时报出几个慢查询。
这个时候你就该想到是LIMIT偏移的问题了,没错,不是你的SQL不够优美,就是MySQL自身的机制。
这里我就简单以两条SQL为例,如下图,分别是从100和100W的位置偏移分页,可以看到时间相差很大。这还不算其它数据运算和处理的时间,单一条SQL的查询就耗时一秒以上,在对用户提供的功能里这是不能容忍的(电商里经常要求一个接口的RT不超过200ms)。
这里我们再看下执行计划,如下图所示:
在此先介绍一下执行计划Extra列可能出现的值及含义:
- Using where:表示优化器需要通过索引回表查询数据。
- Using index:即覆盖索引,表示直接访问索引就足够获取到所需要的数据,不需要通过索引回表,通常是通过将待查询字段建立联合索引实现。
- Using index condition:在5.6版本后加入的新特性,即大名鼎鼎的索引下推,是MySQL关于减少回表次数的重大优化。
- Using filesort:文件排序,这个一般在ORDER BY时候,数据量过大,MySQL会将所有数据召回内存中排序,比较消耗资源。
优化
原因分析完了,那么LIMIT深度分页在实际开发中怎么优化呢?这里少侠给两点方案。 一是通过主键索引优化。什么意思呢?就是把上面的语句修改成:SELECT * FROM cps_user_order_detail d WHERE d.id > #{maxId} AND d.order_time>'2020-8-5 00:00:00' ORDER BY d.order_time desc LIMIT 6;
如上代码所示,同样也是分页,但是有个maxId的限制条件,这个是什么意思呢,maxId就是上一页中的最大主键Id。所以采用此方式的前提:1)主键必须自增不能是UUID并且前端除了传基本分页参数pageNo,pageSize外,还必须把每次上一页的最大Id带过来,2)该方式不支持随机跳页,也就是说只能上下翻页。如下图所示是某知名电商中的实际页面。
二是通过Elastic Search搜索引擎优化(基于倒排索引),实际上类似于淘宝这样的电商基本上都是把所有商品放进ES搜索引擎里的(那么海量的数据,放进MySQL是不可能的,放进Redis也不现实)。但即使用了ES搜索引擎,也还是有可能发生深度分页的问题的,这时怎么办呢?答案是通过游标scroll。关于此点这里不做深入,感兴趣的可以做研究。
如需转载请保留本文出处: https://zhe94.com/789.html